- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Defne, Zafer (3)
-
Fagherazzi, Sergio (2)
-
Bao, Daoyang (1)
-
Carniello, Luca (1)
-
D’Alpaos, Andrea (1)
-
Ganju, Neil K. (1)
-
Ganju, Neil_K (1)
-
He, Ruoying (1)
-
Hegermiller, Christie (1)
-
Kirwan, Matthew L. (1)
-
Moulton, Melissa (1)
-
Warner, John C (1)
-
Xue, Z George (1)
-
Yin, Dongxiao (1)
-
Zambon, Joseph B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extreme precipitation during Hurricane Florence, which made landfall in North Carolina in September 2018, led to breaches of hog waste lagoons, coal ash pits, and wastewater facilities. In the weeks following the storm, freshwater discharge carried pollutants, sediment, organic matter, and debris to the coastal ocean, contributing to beach closures, algae blooms, hypoxia, and other ecosystem impacts. Here, the ocean pathways of land‐sourced contaminants following Hurricane Florence are investigated using the Regional Ocean Modeling System (ROMS) with a river point source with fixed water properties from a hydrologic model (WRF‐Hydro) of the Cape Fear River Basin, North Carolina's largest watershed. Patterns of contaminant transport in the coastal ocean are quantified with a finite duration tracer release based on observed flooding of agricultural and industrial facilities. A suite of synthetic events also was simulated to investigate the sensitivity of the river plume transport pathways to river discharge and wind direction. The simulated Hurricane Florence discharge event led to westward (downcoast) transport of contaminants in a coastal current, along with intermittent storage and release of material in an offshore (bulge) or eastward (upcoast) region near the river mouth, modulated by alternating upwelling and downwelling winds. The river plume patterns led to a delayed onset and long duration of contaminants affecting beaches 100 km to the west, days to weeks after the storm. Maps of the onset and duration of hypothetical water quality hazards for a range of weather conditions may provide guidance to managers on the timing of swimming/shellfishing advisories and water quality sampling.more » « less
-
Ganju, Neil_K; Defne, Zafer; Fagherazzi, Sergio (, Geophysical Research Letters)Abstract Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.more » « less
-
Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D’Alpaos, Andrea; Carniello, Luca (, Nature Communications)
An official website of the United States government
